Updated for the new July 2020 FE Exam Topics

Below are the NCEES category specifications for exam coverage.

Effective July 1st, 2020, these are the categories and subcategories specified by the NCEES that this discipline will cover. It includes an estimate of the number of questions you will see on the official exam for each category. We've covered the specification changes in this blog post. PrepFE provides hundreds of questions in proportional amounts to the official exam.

*For current categories that are effective until July 1st, 2020, please see the categories here. *

Mathematics and Statistics

8 to 12 questions

Analytic geometry

Single-variable calculus

Vector operations

Statistics (e.g., distributions, mean, mode, standard deviation, confidence interval, regression and curve fitting)

Ethics and Professional Practice

4 to 6 questions

Codes of ethics (professional and technical societies)

Professional liability

Licensure

Contracts and contract law

Engineering Economics

5 to 8 questions

Time value of money (e.g., equivalence, present worth, equivalent annual worth, future worth, rate of return)

Cost (e.g., fixed, variable, direct and indirect labor, incremental, average, sunk)

Analyses (e.g., break-even, benefit-cost, life cycle, sustainability, renewable energy)

Uncertainty (e.g., expected value and risk)

Statics

8 to 12 questions

Resultants of force systems

Equivalent force systems

Equilibrium of rigid bodies

Frames and trusses

Centroid of area

Area moments of inertia

Static friction

Dynamics

4 to 6 questions

Kinematics (e.g., particles, rigid bodies)

Mass moments of inertia

Force acceleration (e.g., particles, rigid bodies)

Work, energy, and power (e.g., particles, rigid bodies)

Mechanics of Materials

7 to 11 questions

Shear and moment diagrams

Stresses and strains (e.g., diagrams, axial, torsion, bending, shear, thermal)

Deformations (e.g., axial, torsion, bending, thermal)

Combined stresses, principal stresses, and Mohr's circle

Materials

5 to 8 questions

Mix design of concrete and asphalt

Test methods and specifications of metals, concrete, aggregates, asphalt, and wood

Physical and mechanical properties of metals, concrete, aggregates, asphalt, and wood

Fluid Mechanics

6 to 9 questions

Flow measurement

Fluid properties

Fluid statics

Energy, impulse, and momentum of fluids

Surveying

6 to 9 questions

Angles, distances, and trigonometry

Area computations

Earthwork and volume computations

Coordinate systems (e.g., state plane, latitude/longitude)

Leveling (e.g., differential, elevations, percent grades)

Water Resources and Environmental Engineering

10 to 15 questions

Basic hydrology (e.g., infiltration, rainfall, runoff, watersheds)

Basic hydraulics (e.g., Manning equation, Bernoulli theorem, open-channel flow)

Pumps

Water distribution systems

Flood control (e.g., dams, routing, spillways)

Stormwater (e.g., detention, routing, quality)

Collection systems (e.g., wastewater, stormwater)

Groundwater (e.g., flow, wells, drawdown)

Water quality (e.g., ground and surface, basic water chemistry)

Testing and standards (e.g., water, wastewater, air, noise)

Water and wastewater treatment (e.g., biological processes, softening, drinking water treatment)

Structural Engineering

10 to 15 questions

Analysis of statically determinant beams, columns, trusses, and frames

Deflection of statically determinant beams, trusses, and frames

Column analysis (e.g., buckling, boundary conditions)

Structural determinacy and stability analysis of beams, trusses, and frames

Elementary statically indeterminate structures

Loads, load combinations, and load paths (e.g., dead, live, lateral, influence lines and moving loads, tributary areas)

Design of steel components (e.g., codes and design philosophies, beams, columns, tension members, connections)

Design of reinforced concrete components (e.g., codes and design philosophies, beams, columns)

Geotechnical Engineering

10 to 15 questions

Index properties and soil classifications

Phase relations

Laboratory and field tests

Effective stress

Stability of retaining structures (e.g., active/passive/at-rest pressure)

Shear strength

Bearing capacity

Foundation types (e.g., spread footings, deep foundations, wall footings, mats)

Consolidation and differential settlement

Slope stability (e.g., fills, embankments, cuts, dams)

Soil stabilization (e.g., chemical additives, geosynthetics)

Transportation Engineering

9 to 14 questions

Geometric design (e.g., streets, highways, intersections)

Pavement system design (e.g., thickness, subgrade, drainage, rehabilitation)

Traffic capacity and flow theory

Traffic control devices

Transportation planning (e.g., travel forecast modeling, safety, trip generation)

Construction Engineering

8 to 12 questions

Project administration (e.g., documents, management, procurement, project delivery methods)

Construction operations and methods (e.g., safety, equipment, productivity analysis, temporary erosion control)

Project controls (e.g., earned value, scheduling, allocation of resources, activity relationships)

Construction estimating

Interpretation of engineering drawings